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Abstract. The unique conditions of edge tokamak plasmas motivate the employment of efficient
numerical methods that can robustly handle steep temperature and density gradients. To that end,
we compare an Arakawa finite difference technique with some recent high-resolution upwind methods
that are designed to minimize non-monotonic overshoots while preserving the accuracy of solutions at
smooth extrema. Versions of these algorithms are able to rigorously preserve positivity when that is
physically relevant (such as for the advection of particle density or temperature). We explain in detail
the use of these methods for the nonlinear Poisson bracket, an operator applicable to neutral fluid,
gyrofluid, gyrokinetic, and general Hamiltonian simulations. For one-dimensional passive advection,
the high-resolution upwind techniques maintain monotonicity and approach minimal levels of phase
error and dissipation, especially at long-wavelengths. In a two-dimensional incompressible Navier-
Stokes vortex merging problem we find that extrema-preserving methods can resolve details at lower
resolution than the Arakawa technique, are less dissipative than traditional finite volume methods
while still minimizing overshoots and ensuring positivity, and model nonlinear cascade behavior fairly
well without additional subgrid damping.
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1. Introduction. The unique environment of the edge region of fusion plas-
mas complicates the study of turbulence. Analytic approximations made to simplify
tokamak core simulations do not necessarily hold true. Fluctuation levels may grow
as large as the background distribution function, thereby limiting the applicability
of perturbative formulations. Furthermore, steep temperature and density gradients
and the general range of scales in edge turbulence strain computational resources.
As the density and temperature can vary by two orders of magnitude or more over
very short distances in the edge region, for instance, from the top of the pedestal to
the scrape-off layer or in the vicinity of plasma blobs, the resolution requirements to
accurately model the system can be challenging. These large gradients can lead to
many of the same difficulties, such as unphysical overshoots and negative solutions,
that motivated the development of modern shock-capturing algorithms.

In choosing from the virtual zoo of numerical algorithms the best possible method
for edge turbulence simulation, one should consider many different properties of the
computational scheme. First of all, it is important to consider the various conservation
properties of the method. How well does the scheme preserve the density, momentum,
energy, enstrophy and/or entropy of the system if physical dissipation is turned off?
But one should also consider other important properties beyond integral conservation
laws. For example, a second consideration is that one would like the system to satisfy
certain physical constraints. Positivity-preserving algorithms can ensure that the
temperature, density and distribution function solutions never drop below zero. This
is particularly important in the presence of shocks, blobs and other steep-gradient
features. Third, the accuracy of the employed method is important. High-order
schemes can be advantageous, as they reduce the resolution required to accurately
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model the physics of the system. Any reduction in resolution gets amplified according
to the dimensions of the problem. A factor of 2 reduction in resolution leads to a
factor of 2d reduction in memory and a factor of ≈ 2d+1 reduction in computing
time, which is a factor of ≈ 64 speed up for 5-dimensional gyrokinetics. (Though the
reduction in the number of grid points is partially offset by the increased work per grid
point needed for higher order methods, this can still be advantageous because many
modern computers are limited by the bandwidth between memory and processor, so
it is relatively efficient to do the extra calculations per memory access needed for
higher order methods). Finally, when dealing with turbulence simulations, one must
consider the ability of the algorithm to deal with cascades in k-space.

The problems with edge plasma turbulence simulation are not, it should be noted,
confined to plasmas. The similarities between the equations governing drift-wave tur-
bulence, two-dimensional neutral fluid turbulence, and general Hamiltonian systems,
expand this problem to a much wider realm. While each physical problem has its
own ideal algorithm, the knowledge on algorithm behavior gained in one field easily
translates.

Naulin and Nielsen [21] compared a spectral method, a well-known Arakawa finite
difference method [1], and a third order finite-volume WENO method [18, 26] due to
Kurganov and Levy [14], for the two-dimensional high Reynolds number Navier-Stokes
problem of vortex merging [24]. Naulin and Nielsen’s conclusion was that the inherent
numerical dissipation from the upwinding in the third order WENO method was so
large that it was relatively inefficient for high Reynolds number flows. Their analysis
focused on the conservation properties of the algorithms. Over time, the dissipation of
the WENO method damped out fine features in the vorticity, ω, thereby reducing the
total enstrophy Ω = 1

2

∫
ω2dA significantly faster than viscosity alone would at high

resolution. Since the Arakawa finite difference method is designed mathematically to
conserve Ω [1], Naulin and Nielsen concluded that the Arakawa method is preferable
to the third order WENO scheme.

Our aim is to reexamine the vortex merger problem to test other aspects of numer-
ical algorithms that may also be important for gyrokinetic and gyrofluid edge plasma
simulations. In particular, while previous work focused on the conservation proper-
ties of algorithms, other properties such as positivity preservation and the modeling
of cascades may be more important for edge turbulence applications. We will extend
previous comparisons to include other modern finite volume methods with lower dissi-
pation than a third order upwind method, including some recent high-order methods
designed to reduce clipping of extrema by distinguishing smooth extrema from dis-
continuities. Section 2 lays out the vortex merger problem while Section 3 documents
each algorithm and some of their unique properties. We present results for inviscid
one-dimensional passive advection and for full two-dimensional nonlinear hydrody-
namics in Section 4.

2. The Model System and General Problem Parameters. Due to the
universality of nonlinear multi-dimensional advection, we take as our model system
the same employed in Ref. [21], namely a two-dimensional neutral fluid vortex merger.
We begin with the incompressible, unforced, 2D Navier-Stokes equations:

∂~v

∂t
+ (~v · ∇)~v = ν∇2~v −∇p. (2.1)

Here, ~v = vxx̂ + vy ŷ is the velocity vector of the fluid confined in the x-y plane,
and ν is the kinematic viscosity. (The mass density has been normalized to unity.)
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The scalar pressure, p, is governed by the incompressibility condition, ∇ · ~v = 0.
One can apply the curl operator to express Eq. 2.1 in terms of the scalar vorticity,
ω = (∇×~v) · ẑ, and a stream function, ψ : (∇ψ× ẑ = ~v). The new system of equations
is:

∂ω

∂t
= − [ω, ψ] + ν∇2ω, (2.2)

∇2ψ = − (ω + ωoffset) . (2.3)

A Poisson equation, Eq. 2.3, relates the vorticity and the stream function. The
constant ωoffset will be discussed in greater detail below. The bracket term, [ω, ψ], is
the standard Poisson bracket, given by

[ω, ψ] = ~v · ∇ω =
∂ω

∂x

∂ψ

∂y
− ∂ω

∂y

∂ψ

∂x
. (2.4)

The Poisson bracket term is our canonical nonlinear advection term. While this
formulation is specifically for neutral fluids, this nonlinear term is ubiquitous, since
many systems, including the gyrokinetic equations for magnetized plasma turbulence,
are described by Hamiltonian dynamics that can be expressed in terms of Poisson
brackets. For instance, in plasma simulations one is interested in the advection of
plasma density n by the ~E× ~B drift velocity. In such cases ~vE×B ·∇n ∝ [Φ, n], where
Φ is the electrostatic potential. As such, discretizations of Eq. 2.4 can be applied
to plasma physics turbulence problems. All of the algorithms in Section 3 represent
Eq. 2.4 differently.

Following the details outlined in [21], we solve Eqs. 2.2 and 2.3 on a doubly-
periodic domain of dimensions 10 × 10 length units. The uniform grid spacing is
h = ∆x = ∆y = 10/N , with N being the number of grid points in either the x or y
directions, or i, j ∈ [0, N − 1].

As our focus will be on the nonlinear Poisson bracket, Eq. 2.4, we will use an
explicit “4-point stencil” for the viscous term on the right hand side of Eq. 2.2.
Specifically we set

∇2ωi,j =
1

h2
(ωi−1,j + ωi+1,j + ωi,j−1 + ωi,j+1 − 4ωi,j) . (2.5)

While the authors of Ref. [21] employ an implicit form for Eq. 2.5, there is no signifi-
cant difference in solutions for the small time steps used in our simulations.

Additionally, to solve the Poisson equation, Eq. 2.3, we use a spectral technique
based on the FFTW package [8] that takes advantage of the fact that in k-space the
inversion of Eq. 2.3 is algebraic.

The problem is that of two merging Gaussian vortexes. They are initially 3 length
units apart, have unit maximum and are given in standard Gaussian form as:

ωl(~ri,j) = e−|~ri,j−~rl|
2/(2σ2). (2.6)

As to be expected, |~ri,j | =
√
x2
i + y2

i = h
√
i2 + j2 is a distance on the grid, ~rl is the

location of the center of Gaussian number l, and σ is the standard deviation of the
monopole. Following [21] we define our Gaussian monopoles such that 2σ2 = (0.8)2

or σ = 0.8/
√

2 ≈ 1.131. The initial positions of the two peaks are ~r1 = (3.5, 5.0)
and ~r2 = (6.5, 5.0). After summing these two Gaussians to give the initial vorticity
ω(~r) = ω1(~r) + ω2(~r), we calculate a small offset to the Poisson equation equivalent
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to ensuring that the total net vorticity on the grid
∑
i,j(ωi,j + ωoffset) has zero

total circulation, so that the Poisson equation is invertible on a periodic domain.
Specifically, this offset is written as:

ωoffset = −h
2

L2

∑
i,j

ωi,j . (2.7)

While in 2-D hydrodynamics the local vorticity ω(r) can have either sign, the
equivalent Poisson equation in plasmas involves contributions from the ion and elec-
tron charge densities, both of which must individually be of only one sign, so positivity
preservation of the ion and electron particle density is important.

Simulations are further parametrized by the Reynolds number, defined here as
Re = σv0

max/
(√

2ν
)
, where v0

maxis the maximum scalar velocity based on the initial
conditions and is approximately 0.25. We examine high Reynolds number (Re =
100, 000) and inviscid (ν = 0) calculations. The time steps are variable during the
course of the simulation and are designed to keep the Courant number at CFL =
vmax∆t/h = 0.1, well below the stability limit.

2.1. Time-Advancement Algorithms and Positivity Constraints. To ad-
vance the system in time, we employ a third order strong stability preserving Runge-
Kutta algorithm (SSP-RK3), as described in Ref. [11]. It is a multi-stage process that
is slightly complicated by the coupled equations 2.2-2.3. Write Eq. 2.2 in the generic
form

∂ω

∂t
= ξ(ω, ψ). (2.8)

The SSP-RK3 method evolves this equation in three stages for every total time step,
∆t, with the total process a convex average of forward Euler steps. If each Euler step
preserves certain properties (such as monotonicity, as the limiters of the various finite
volume methods are designed to do), then the convex average of the final method will
preserve these properties as well. Defining the vorticity and stream function at time
step n as ωn and ψn, then the SSP-RK3 method is

ω? = ωn + ∆t ξ(ωn, ψn), (2.9)

ω′ =
3

4
ωn +

1

4
ω? +

1

4
∆t ξ(ω?, ψ?), (2.10)

ωn+1 =
1

3
ωn +

2

3
ω′ +

2

3
∆t ξ(ω′, ψ′). (2.11)

It should be noted that each vorticity/stream function pair must satisfy the Poisson
equation, Eq. 2.3, so this requires three inversions of Eq. 2.3 per time step.

As mentioned, we run the simulations with a CFL number of 0.1 to ensure that our
comparison of spatial algorithms is not muddled by temporal errors. While our focus
will be primarily on the different algorithms for evaluating the Poisson bracket, the
choice of time-integration scheme in a plasma edge turbulence simulation is important
as well.

The SSP-RK3 algorithm is one of a set of schemes designed to maintain the
properties (such as monotonicity and positivity) of the simulation throughout the
multi-stage integration process. There is a trade-off with these multi-stage algorithms.
As the number of stages increases, one can get higher-order accuracy and/or increase
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the maximum stable time step, but this of course increases the amount of work to
invert the Poisson equation and evaluate the Poisson bracket for each stage.

SSP-RK algorithms are comprised of many Euler-like sub-stages, each of which
makes a temporal advance of ∆t1. In order for an SSP-RK algorithm to preserve
monotonicity (and/or positivity, if relevant), it must satisfy a constraint on the max-
imum allowable sub-stage time advance [10]. Namely, if we define a CFL time scale
by ∆tCFL = h/v, then to preserve monotonicity or positivity, each sub-stage of an
SSP-RK method must satisfy a constraint of the form

∆t1,max =
∆tCFL

1 + α
, (2.12)

where the value of α depends on the spatial discretization algorithm and generally
increases with the order of the spatial discretization. (Possible choices of α and its
relation to monotonicity preservation are discussed in Ref. [27]. We will use their
suggested value of α = 4 for the cases in this paper. Values of α for positivity preser-
vation are discussed below.) The length of each of these substeps is dependent upon
the time-advancement algorithm. For instance, in the SSP-RK3 algorithm described
in Eqs. 2.9-2.11, ∆t1 = ∆t, the total time step. While the ratio of the total time
step to a substep, ∆t/∆t1, is algorithmically dependent, it does define the maximum
allowable total time step, ∆tmax = (∆t/∆t1)∆t1,max. We can define an SSP-based
relative efficiency for an algorithm as the ratio of this maximum allowable time step
(relative to the Courant time ∆tCFL) to the number of stages in the Runge-Kutta
scheme:

εt =
∆tmax

∆tCFL

1

Nstages

=
∆t

∆t1

1

Nstages(1 + α)
. (2.13)

While detailed discussion of various optimal SSP algorithms can be found in Ref. [10],
Table 2.1 highlights the efficiencies of a few methods. The three-stage RK method
we will use, Eqs. 2.9-2.11, is actually more efficient than an optimal five-stage, fourth
order method, because it has fewer stages. Even still, a recently discovered ten-
stage SSP-RK4 algorithm [12] is nearly twice as efficient as the five-stage version,
because it allows for a much larger time step. This analysis, however, only takes into
consideration the work required for monotonicity and positivity. In situations where
high accuracy is of greater concern, higher-order methods would be favorable.

In any case, we are focused primarily on spatial discretizations of the advection
operator and so choose the simpler SSP-RK3 method with small enough time step as
not to obscure the spatial discretization analysis. An estimate of the time stepping
errors can be seen in Fig. 4.3, where the dissipation from the Arakawa scheme is
entirely from time integration errors.

Time advancement can also alter the monotonicity and positivity properties of
the system. Two of the Poisson bracket algorithms to be discussed, the XPPM and
Suresh-Huynh algorithms, are monotonicity preserving, but they are not necessarily
positivity preserving, a desirable property when simulating advection of physically
positive quantities (examples include density, temperature, probabilities, or particle
distribution functions). To understand the origin of this problem, note that these
algorithms are monotonicity preserving (for constant advection in one dimension, if
the time step is sufficiently small) in the sense that an initially monotonic region
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Table 2.1
Stability-based efficiency of various time-advancement algorithms [10], measured by work re-

quired to integrate forward in time using the maximum possible time step to preserve stability,
monotonicity and positivity. The parameter α depends on the spatial discretization algorithm, and
the length of a substep is ∆t1. While the fourth order 5-stage Runge-Kutta SSP method is more ac-
curate than the lower order SSP-RK3 algorithm, it is slightly less efficient, as measured by Eq. 2.13.
The low-storage ten-stage SSP-RK4 method [12] is nearly twice as efficient as the five-stage version
of the same order, because it allows for a much larger time step.

Algorithm
Number of Stages Time Step Size Relative Efficiency

Nstages ∆t/∆t1 εt

SSP-RK3 3 1 0.333/(1 + α)
5-stage SSP-RK4 5 1.508 0.302/(1 + α)

Low-storage 10-stage SSP-RK4 10 6 0.6/(1 + α)

remains monotonic after being moved by a time step. (In other words, the algorithms
move existing extrema but do not create any new extrema). However, they do not
necessarily prevent an existing extremum from being accentuated, and thus they do
not necessarily ensure positivity of the solution.

Consider an example of how a monotonicity-preserving algorithm does not nec-
essarily preserve positivity. These Poisson bracket algorithms are exact for smooth
low-order solutions, which can in the vicinity of a minimum can be approximated as:
ω(x, t) = C + (x − vt)2. Choose the cell i of width h to have its left edge at x = 0.
During the time 0 < t < h/(2v), the location of the minimum moves from the edge of
cell towards its center, so the cell-averaged value ω̄i(t) will drop. For certain negative
values of C, it is possible that ω̄i begins positive but becomes negative. Of course, if
ω(x) should be positive, then C ≥ 0, and the initial values of ω̄i should be such that
ω̄i remains positive. However, there exist certain initially positive values of ω̄i that
could lead to negative values of ω̄i at later times.

It is possible to guarantee positivity of the cell-averaged solution by supplementing
these algorithms with a simple additional limiter. A single forward Euler time step
of Eq. 3.3 (neglecting the diffusion term for simplicity) can be written in the form

ω̄n+1
l = ω̄nl −

∑
s

∆t v̂s,l
h

ω̂s,l (2.14)

where ω̂s,l is the value of ω interpolated (with limiters) to the face s of the cell l
at time level n, and v̂s,l is the velocity directed outward through face s. (For two-
dimensional problems, s = 1 . . . 4, and v̂s,l = −vi−1/2,j for s corresponding to the left
face of cell (i, j).) To ensure positivity of the solution at time tn+1, we must satisfy∑
s(∆t v̂s,l/h) ω̂s,l ≤ ω̄nl . If we use a conservative upper bound on the left-hand side

of this equation based on only the outward fluxes from this cell (vs,l ≥ 0), and if the
edge interpolations are bounded by

0 ≤ ω̂s,l ≤ (1 + α) ω̄nl (2.15)

for some constant α (to be discussed), then positivity is preserved if∑
s

∆t max(v̂s,l, 0)/h ≤ 1/(1 + α) (2.16)

is satisfied for all cells. The maximum value over all cells of the left-hand side of
this equation defines a generalized CFL parameter, so positivity is satisfied if CFL ≤
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1/(1 + α). (Alternatively, for a given CFL parameter, one can limit the interpolated
value of ω̂s,l to satisfy ω̂s,l < ω̄nl /CFL to ensure positivity.)

To preserve the order of accuracy of the algorithm, one chooses α large enough to
avoid limiting any allowable, positive solutions that are sufficiently smooth. For the
fourth order XPPM or SuHu-PPM, where solutions are of the form ω(x) ∝ (x− x0)2

near a zero, the maximum value for the ratio of the edge value to its cell average value,
ω̂s,l/ω̄

n
l , is 4. Therefore, setting α = 3 will guarantee positivity. The value of α = 4

used in the original SuHu algorithm will also ensure positivity without reducing the
order of accuracy, if the edge interpolations are limited to satisfy Eq. 2.15 and the
time step satisfies Eq. 2.16.

These results for the choice of α apply in the asymptotic limit as the grid is refined.
One might consider more general polynomials near a minimum. As an example for
XPPM or SuHu-PPM, which use cubic interpolating polynomials, one could have
ω(x) ∝ (x − x0)2(x − x2) locally near a particular cell containing x0. A value of
α ≈ 3.38 would be necessary to avoid limiting any case where the point x2 (where ω
changes sign and this local polynomial expansion breaks down) lies at least two cells
away. However, as the grid is refined so that the point x2 is many cells away, then
α = 3 becomes an acceptable limit to preserve positivity and the order of accuracy.

For the fifth order SuHu algorithm, where ω(x) ∝ (x− x0)4 is possible, one finds
the maximum ratio of edge to cell-averaged values gives α ≈ 6.43, which would lead
to the time step restriction, CFL < 0.13, somewhat stricter than the Suresh-Huynh
original choice for just monotonicity, CFL < 0.2. However, if high order minima are
rare and it is more likely to have distinct 2cd order minima, ω(x) ∝ (x−x0)2(x−x2)2,
then the value of α ∼ 3–4 may be sufficient in most cases, allowing a larger time step
with little loss of accuracy.

The limiter in Eq. 2.15 will preserve positivity if the SSP-RK time step is suf-
ficiently small, with CFL < 0.2 for our parameters. As mentioned in Ref. [6], it is
possible to couple finite volume methods with the Zalesak form of the Flux-Corrected
Transport method (FCT) [28] to ensure global positivity for larger time steps.

The key idea of FCT is that it expresses a high-order flux as the sum of a low-
order upwind flux (which is diffusive enough to guarantee positivity) and a correction
flux, which has the form of an anti-diffusion. It then uses a two-step process, where
the first step uses the low-order upwind flux to provisionally advance the solution,
followed by a second step where it uses as much of the anti-diffusion flux as possible
while still preserving positivity (or some other constraint if desired). This two-step
process minimizes the amount of numerical diffusion that is needed. As has been
pointed out [19], it is not necessary to apply the FCT algorithm on every sub-stage
of a Runge-Kutta (RK) time-advancement algorithm. Instead, one could apply FCT
only after a full (RK) time step, using the net high-order flux averaged over the
Runge-Kutta sub-stages as the starting point for FCT. Furthermore, if an individual
RK sub-stage generates negative values, the corrections from the other sub-stages are
likely to make it positive again, so that it may be possible to skip the FCT procedure
after most time steps. (Negative values during intermediate RK stages can be limited
if necessary when calculating fluxes, which still satisfies the conservation law as long
as only the fluxes are modified.)

3. The Poisson Bracket Algorithms. We compare six different algorithms
for the spatial discretization of the Poisson bracket, Eq. 2.4. Like the authors of
[21] we examine Arakawa finite differencing [1] and a third order WENO scheme
[14, 18, 26]. Additionally, we compare the behavior of a variant of the Piecewise
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Parabolic Method (PPM) with and without a limiter designed to improve the accuracy
at smooth extrema [6, 7]. We also consider another WENO method meant to decrease
the diffusion of solutions at extrema as laid out in Ref. [27]. While many of these high-
resolution upwind algorithms have been tested for 1-D linear and shock problems, here
we also compare them side by side with Arakawa on a 2-D nonlinear incompressible
flow problem.

3.1. Arakawa Finite Differencing. A classic implementation of the Poisson
bracket, Eq. 2.4, is the finite difference method proposed by Arakawa [1, 2]. It
has the advantages of a straightforward, closed-form equation and of preserving dis-
crete analogs of the exact linear and quadratic conservation properties of the Pois-
son bracket. That is, it guarantees conservation of the mean vorticity, which re-
sults from

∫
d2r [ψ, ω] = 0, and conservation of both quadratic invariants of 2-D

hydrodynamics, the energy and the enstrophy Ω (the total squared vorticity, Ω =
(1/2)

∫
d2r |ω|2 → (1/2)h2

∑
i,j |ωi,j |2), which result from the discrete equivalents of

the properties
∫
d2r [ψ, ω]ψ = 0 and

∫
d2r [ψ, ω]ω = 0. In Arakawa’s method, the

Poisson bracket is represented by:

[ω, ψ] = − 1

12h2
× {(ψi,j−1 + ψi+1,j−1 − ψi,j+1 − ψi+1,j+1) (ωi+1,j + ωi,j) (3.1)

− (ψi−1,j−1 + ψi,j−1 − ψi−1,j+1 − ψi,j+1) (ωi−1,j + ωi,j)

+ (ψi+1,j + ψi+1,j+1 − ψi−1,j − ψi−1,j+1) (ωi,j+1 + ωi,j)

− (ψi+1,j−1 + ψi+1,j − ψi−1,j−1 − ψi−1,j) (ωi,j−1 + ωi,j)

+ (ψi+1,j − ψi,j+1) (ωi+1,j+1 + ωi,j)

− (ψi,j−1 − ψi−1,j) (ωi−1,j−1 + ωi,j)

+ (ψi,j+1 − ψi−1,j) (ωi−1,j+1 + ωi,j)

− (ψi+1,j − ψi,j−1) (ωi+1,j−1 + ωi,j)}.

(The Arakawa algorithm can be considered as having a generalized finite-volume form,
where the first four lines in the above equation correspond to the usual fluxes, between
cell (i, j) and cells to its east, west, north, and south, but the next four lines represent
some kind of corner fluxes, between the center cell and cells to the NE, SW, NW,
and SE. In principle one could apply limiters to these fluxes to satisfy monotonicity
constraints as one does with other finite-volume methods, but that would break the
quadratic conservation properties of the Arakawa method.)

Note that one can consider a 1-D passive advection limit, where ψ = vy and ω is
independent of y, in which case the Arakawa formula applied to Eq. 2.2 reduces to:

∂ωi
∂t

= −vωi+1 − ωi−1

2∆x
+ ν

∂2ω

∂x2
, (3.2)

which is just the standard form for centered second order finite differencing of the
advection term. It is well known that this expression can lead to unphysical oscilla-
tions in the solution, particularly in regions of sharp gradients compared to the grid
resolution, unless the diffusion term is sufficiently strong [16].

3.2. Finite Volume. While finite difference methods focus on the solution at
points, finite volume techniques evolve the integral-averaged quantity within a grid
cell. Specifically, we average Eq. 2.2 over a grid cell to obtain the following conservative
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equation for the volume-averaged vorticity, ω̄i,j ≡ h−2
∫ ∫

i,j
ωdxdy:

∂ω̄i,j
∂t

= ν∇2ω̄i,j −
1

h

(
F xi+1/2,j − F

x
i−1/2,j + F yi,,j+1/2 − F

y
i,j−1/2

)
. (3.3)

The form of Eq. 3.3 is the same as Eq. 2.2, with the Poisson bracket term represented
as a divergence of fluxes. Fundamentally we are evolving the same equation, but
philosophically it is important to remember that these are volume-averaged vorticities,
not necessarily the point-value vorticity at the grid center. The fluxes through the
grid cell are defined in terms of the velocities and vorticities along grid edges:

F xi+1/2,j = vxi+1/2,j × ω
∗
i+1/2,j , (3.4)

F yi,j+1/2 = vyi,j+1/2 × ω
∗
i,j+1/2, (3.5)

The choice of ω∗depends upon the direction of the velocity. Finite-volume algorithms
allow discontinuities at the grid boundaries, so along each grid edge there exist two val-
ues for the vorticity, depending upon which side of the interface one looks. Specifically,
let us define the vorticity in grid cell (i, j) at the boundaries of that cell (i±1/2, j±1/2)
as

ωRi,j = ωi+1/2,j , (3.6)

ωLi,j = ωi−1/2,j , (3.7)

ωUi,j = ωi,j+1/2, (3.8)

ωDi,j = ωi,j−1/2. (3.9)

The heart of every finite volume method lies in the determination of these “right,”
“left,” “up,” and “down” edge vorticities

{
ωRi,j , ω

L
i,j , ω

U
i,j , ω

D
i,j

}
. Once calculated, we

choose ω∗ to be the edge value of the vorticity in the cell from which a fluid element
would originate (the “upwind” direction). Mathematically this is represented in the
x-direction as:

ω∗i+1/2,j =

{
ωRi,j vxi+1/2,j > 0

ωLi+1,j vxi+1/2,j < 0
, (3.10)

ω∗i−1/2,j =

{
ωRi−1,j vxi−1/2,j > 0

ωLi,j vxi−1/2,j < 0
. (3.11)

The y-direction is symmetric:

ω∗i,j+1/2 =

{
ωUi,j vyi,j+1/2 > 0

ωDi,j+1 vyi,j+1/2 < 0
, (3.12)

ω∗i,j−1/2 =

{
ωUi,j−1 vyi,j−1/2 > 0

ωDi,j vyi,j−1/2 < 0
. (3.13)

Proceeding with any finite volume method involves the calculation of the vor-

ticities
{
ωRi,j , ω

L
i,j , ω

U
i,j , ω

D
i,j

}
and the edge velocities

{
vxi±1/2,j , v

y
i,j±1/2

}
. The velocity

calculation is straightforwardly based upon the stream function. We use a centered
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discretization for the velocities ~v = ∇ψ× ẑ and define vxi,j = (ψi,j+1 − ψi,j−1) /2h and
vyi,j = − (ψi+1,j − ψi−1,j) /2h. We then interpolate linearly to the cell edges:

vxi±1/2,j =
1

2

(
vxi,j + vxi±1,j

)
, (3.14)

vyi,j±1/2 =
1

2

(
vyi,j + vyi,j±1

)
. (3.15)

[Although we will be using higher order methods for the interpolations of ω to the
cell faces, the final algorithm is formally only second order accurate in multiple di-
mensions because we are using simple mid-point evaluations of the face-averaged
fluxes such as F xi+1/2,j = 〈vxω∗〉i+1/2,j = (1/h)

∫ yj+1/2

yj−1/2
dy vx(xi+1/2, y)ω∗(xi+1/2, y) ≈

vxi+1/2,jω
∗
i+1/2,j . The higher order aspects of the ω interpolations are still useful for

reducing numerical dissipation. Extensions to full higher-order accuracy can be done,
see for example Ref. [5].]

The edge vorticity calculation is unique to each finite volume method. However,
all techniques involve two basic steps:

1. Interpolate from cell-averaged vorticities to cell boundaries. This is usually
accomplished by fitting surrounding vorticity values to a high-order polyno-

mial function. Call these first-stab estimates
{
ω†Ri,j , ω

†L
i,j , ω

†U
i,j , ω

†D
i,j

}
.

2. Limit these initial interpolations,
{
ω†Ri,j , ω

†L
i,j , ω

†U
i,j , ω

†D
i,j

}
, according to a set of

pre-defined conditions. These initial estimates may (or may not) be altered
during the process, but the result is the set

{
ωRi,j , ω

L
i,j , ω

U
i,j , ω

D
i,j

}
to be used

in Eqs. 3.10-3.13. Most often this is to prevent over- and under-shoots in the
solution, but the exact mechanism varies with the algorithm.

Once one has determined the edge velocities
{
vxi±1/2,j , v

y
i,j±1/2

}
from Eqs. 3.14 and

3.15 and
{
ωRi,j , ω

L
i,j , ω

U
i,j , ω

D
i,j

}
from the method-specific interpolation/limiting algo-

rithm, the procedure continues by using Eqs. 3.10-3.13 to determine the values of
ω∗. Hence, one can use Eqs. 3.4 and 3.5 to determine the appropriate flux in Eq. 3.3.
The coding to evolve the equation in time is identical for a finite volume method as
for a finite difference equation, with the Poisson bracket term in Eq. 2.2 replaced by
the flux terms in Eq. 3.3.

We now describe the algorithms for the interpolation and limiting of edge-valued
vorticities in the x-direction. The y-direction is symmetric under the transformation:
{R,L, i, j} → {U,D, j, i}.

3.2.1. Third-Order WENO (WENO3). We employ the third order WENO
method as suggested by Kurganov and Levy [14]. The interpolations are parabolic,
while the limiters rigorously preserve monotonicity and reduce to piecewise constant
values at extrema. First we determine if the current grid cell vorticity is either a
maximum or a minimum. If so, we set the edge vorticity values to be equal to the
cell-averaged value:

if sign (ω̄i+1,j − ω̄i,j) 6= sign (ω̄i,j − ω̄i−1,j) then

ωRi,j = ωLij = ω̄i,j . (3.16)

Otherwise, we are not at an extremum and we proceed with our parabolic interpola-

tions for
{
ω†Ri,j , ω

†L
i,j

}
. Defining ∆1

i = (ω̄i+1,j − ω̄i−1,j) and ∆2
i = (ω̄i+1,j − 2ω̄i,j + ω̄i−1,j)

10



we have:

ω†Ri,j = ω̄i,j +
1

4
∆1
i +

1

12
∆2
i , (3.17)

ω†Li,j = ω̄i,j −
1

4
∆1
i +

1

12
∆2
i . (3.18)

The limiters to ensure that rigorously no over- and under-shoots appear in the
solution proceed thusly:

if sign
(
ω̄i,j − ω†Li,j

)
6= sign

(
ω†Li,j − ω̄i−1,j

)
then

ωLi,j = ω̄i−1,j , (3.19)

ωRi,j = ω̄i−1,j +
5

2
(ω̄i,j − ω̄i−1,j) , (3.20)

else if sign
(
ω̄i,j − ω†Ri,j

)
6= sign

(
ω†Ri,j − ω̄i+1,j

)
then

ωRi,j = ω̄i+1,j , (3.21)

ωLi,j = ω̄i+1,j +
5

2
(ω̄i,j − ω̄i+1,j) . (3.22)

If neither of these conditions is met, the limiter is not triggered and the initial esti-
mates are used: ωR,Li,j = ω†R,Li,j .

The limiters in the WENO3 scheme serve to ensure that edge vorticity values lie
between the values of adjacent cells and rigorously preserve this monotonicity.

3.2.2. The Piecewise Parabolic Method (PPM). Originally developed by
Colella and Woodward [7], the Piecewise Parabolic Method (PPM) is a finite volume
method that seeks solutions comprised of local parabolas. Like the WENO3 method
in Sec. 3.2.1, it becomes piecewise constant at extrema. In smooth regions away from
extrema we use a fourth-order variant of PPM (PPM4) for the spatial discretizations,
as described in Ref. [6]. As with all of the other spatial-differencing algorithms, we will
use Runge-Kutta time advancement (instead of the original PPM time-advancement
method), as also done in [5]. In our notation the initial interpolation becomes:

ω†Ri,j =
7

12
(ω̄i,j + ω̄i+1,j)−

1

12
(ω̄i−1,j + ω̄i+2,j) (3.23)

ω†Li,j =
7

12
(ω̄i,j + ω̄i−1,j)−

1

12
(ω̄i−2,j + ω̄i+1,j) . (3.24)

Next, PPM4 completes the interpolation by applying monotonicity constraints to
eliminate solution oscillations. These limiters are triggered when monotonicity is
violated. Explicitly these conditions are:

if
(
ω̄i,j − ω†Ri,j

)(
ω̄i+1,j − ω†Ri,j

)
> 0 then

ω†Ri,j = (ω̄i,j + ω̄i+1,j) /2 −
(
δω∗i+1 − δω∗i

)
/6 (3.25)

if
(
ω̄i−1,j − ω†Li,j

)(
ω̄i,j − ω†Li,j

)
> 0 then

ω†Li,j = (ω̄i−1,j + ω̄i,j) /2 −
(
δω∗i − δω∗i−1

)
/6, (3.26)

with the definitions:

δω∗i =

{
sign

(
∆1
i

)
min

(
1
2

∣∣∆1
i

∣∣ , 2 ∣∣∆L
i

∣∣ , 2 ∣∣∆R
i

∣∣) ∆R
i ∆L

i > 0

0 otherwise
, (3.27)
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with ∆1
i = ω̄i+1,j − ω̄i−1,j , ∆L

i = ω̄i,j − ω̄i−1,j and ∆R
i = ω̄i+1,j − ω̄i,j . As men-

tioned, limiters only apply when monotonicity is violated in the edge interpolations. In

smooth regions away from extrema, there will be no change to ω
†{R,L}
i,j from Eqs. 3.25-

3.26.
The next step in the PPM4 method is to apply additional limiters, which depend

on whether or not the solution is a local extremum, defined not only by the averaged
values, ω̄, but also by the initial interpolations, ω†. Specifically the solution is a local
maximum or minimum if(

ω†Ri,j − ω̄i,j
)(

ω̄i,j − ω†Li,j
)
≤ 0 or (ω̄i−1,j − ω̄i,j) (ω̄i,j − ω̄i+1,j) ≤ 0. (3.28)

If the initial interpolation satisfies Eq. 3.28, we apply the piecewise constant limiters
ωRi,j = ωLi,j = ω̄i,j , like Eq. 3.16.

Away from extrema we apply further limiters that constrain the amount of vari-
ation in the local reconstructions, testing both edge interpolations, {ω†Ri,j , ω

†L
i,j}:

if
∣∣∣ω†R,Li,j − ω̄i,j

∣∣∣ ≥ n ∣∣∣ω̄i,j − ω†L,Ri,j

∣∣∣
then ωR,Li,j = ω̄i,j + n

(
ω̄i,j − ω†L,Ri,j

)
else ωR,Li,j = ω†R,Li,j . (3.29)

We have used n = 3 here to avoid limiting the accuracy of monotonic cubic inter-
polations. It has been pointed out [19] that n = 2 can be used (as is done in the
original Piecewise Parabolic Method) with only rare and slight loss of local accuracy
(because locally quadratic behavior near flat regions is more generic than locally cubic
behavior).

While more complex limiters for the parabolic interpolant exist [6], we follow
Refs. [5] and [19] and choose the limiters described above.

3.2.3. Smooth Extrema Preserving Piecewise Parabolic Method (XPPM).
A major limitation of many finite volume methods is a reduction of accuracy at
smooth extrema [6, 27]. As noted above, many algorithms resort to first-order (piece-
wise constant) solutions at local maxima and minima. One method of improving
the performance of these methods is to apply a new limiter at extrema, to replace
Eq. 3.28. A recently-developed limiter [6] uses estimates of the second derivative
to relax the constraints on solutions at extrema, thereby allowing for solutions with
higher accuracy.

The method is identical to that described in Sec. 3.2.2, with the exception of the
limiters. Interpolation proceeds according to Eq. 3.23.

Instead of Eqs. 3.25-3.26, we use the following (which correct a typo in Eq. (19)
of Ref. [6]):

if
(
ω̄i,j − ω†Ri,j

)(
ω̄i+1,j − ω†Ri,j

)
> 0 then

ω†Ri,j =
1

2
(ω̄i,j + ω̄i+1,j) −

h2

6

(
D2ω

)
i+1/2,j,lim

(3.30)

if
(
ω̄i−1,j − ω†Li,j

)(
ω̄i,j − ω†Li,j

)
> 0 then

ω†Li,j =
1

2
(ω̄i−1,j + ω̄i,j) −

h2

6

(
D2ω

)
i−1/2,j,lim

. (3.31)
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The value of
(
D2ω

)
{i,j}±1/2,lim

is determined from approximations to the second

derivative: (
D2ω

)
i+1/2,j

=
3

h2

(
ω̄i,j − 2ω†Ri,j + ω̄i+1,j

)
,(

D2ω
)
i+1/2,j,L

=
1

h2
(ω̄i−1,j − 2ω̄i,j + ω̄i+1,j) ,(

D2ω
)
i+1/2,j,R

=
1

h2
(ω̄i,j − 2ω̄i+1,j + ω̄i+2,j) . (3.32)

If
(
D2ω

)
i+1/2,j

,
(
D2ω

)
i+1/2,j{L,R} all have the same sign, then

(
D2ω

)
i+1/2,j,lim

= s min
{
C
∣∣∣(D2ω

)
i+1/2,j,L

∣∣∣ , C ∣∣∣(D2ω
)
i+1/2,j,R

∣∣∣ , ∣∣∣(D2ω
)
i+1/2,j

∣∣∣} ;

s = sign
((
D2ω

)
i+1/2,j

)
. (3.33)

Otherwise,
(
D2ω

)
i+1/2,j,lim

= 0. Following Ref. [6] we select C = 1.25. To determine(
D2ω

)
i−1/2,j,lim

, let i→ i− 1 and ω†Ri,j → ω†Li,j .

While modifications to limiters away from extrema exist [6], we follow Refs. [5] and
[19] and focus only on algorithmic modifications at extrema as defined by Eq. 3.28. Re-
cent work on further improvements to the XPPM approach can be found in Ref. [20].

Away from these points our implementation of the XPPM method continues as
the PPM algorithm with Eq. 3.29. When Eq. 3.28 is satisfied, the smooth extrema
limiter [6] initiates, beginning with several approximations to the second derivative:

(
D2ω

)
i,j

=
6

h2

(
ω†Li,j − 2ω̄i,j + ω†Ri,j

)
,(

D2ω
)
i,j,C

=
1

h2
(ω̄i−1,j − 2ω̄i,j + ω̄i+1,j) ,(

D2ω
)
i,j,L

=
1

h2
(ω̄i−2,j − 2ω̄i−1,j + ω̄i,j) ,(

D2ω
)
i,j,R

=
1

h2
(ω̄i,j − 2ω̄i+1,j + ω̄i+2,j) . (3.34)

If
(
D2ω

)
i,j
,
(
D2ω

)
i,j{C,L,R} all have the same sign, then

(
D2ω

)
i,j,lim

= s min
{
C
∣∣∣(D2ω

)
i,j,L

∣∣∣ , C ∣∣∣(D2ω
)
i,j,R

∣∣∣ , C ∣∣∣(D2ω
)
i,j,C

∣∣∣ , ∣∣∣(D2ω
)
i,j

∣∣∣} .
(3.35)

Otherwise,
(
D2ω

)
i,j,lim

= 0. The coefficient s ≡ sign
[(
D2ω

)
i,j

]
, and C is a numerical

constant. Following Ref. [6], we set C = 1.25. The final limiter is

ωR,Li,j =

ω̄i,j +
(
ω†R,Li,j − ω̄i,j

) (D2ω)
i,j,lim

(D2ω)i,j

(
D2ω

)
i,j
6= 0

ω̄i,j
(
D2ω

)
i,j

= 0
. (3.36)

The net effect of this is that at smooth extrema, the limiters turn off and the high-
order interpolation for ω†R,Li,j is used, while at poorly resolved non-smooth extrema,
it switches to approach a piecewise constant reconstruction.
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3.2.4. Fifth Order Suresh-Huynh WENO (SuHu). Another method to
ameliorate the loss of accuracy at extrema comes from Suresh and Huynh [27]. The
technique uses geometrical arguments to maintain the order of the underlying inter-
polation method at smooth local extrema and guarantees global positivity for linear
problems. (It should be noted that no such guarantee is made on nonlinear problems
such as the Navier-Stokes problem here.) While it is possible to apply the SuHu
limiter to any initial edge interpolation, we employ a fifth order quartic polynomial:

ω†Ri,j =
1

60
(2ω̄i−2,j − 13ω̄i−1,j + 47ω̄i,j + 27ω̄i+1,j − 3ω̄i+2,j) , (3.37)

ω†Li,j =
1

60
(2ω̄i+2,j − 13ω̄i+1,j + 47ω̄i,j + 27ω̄i−1,j − 3ω̄i−2,j) . (3.38)

As shown by Eqs. 3.37 and 3.38, the polynomial interpolations are symmetric.
After interpolation, each edge value is limited by a function of the vorticities of the

cell and its neighbors. Let us call that algorithm l(ω†, ω−2, ω−1, ω0, ω+1, ω+2). Sym-
metry allows the same function to be used for each of the edge values

{
ωRi,j , ω

L
i,j , ω

U
i,j , ω

D
i,j

}
:

ωRi,j = l
(
ω†Ri,j , ω̄i−2,j , ω̄i−1,j , ω̄i,j , ω̄i+1,j , ω̄i+2,j

)
, (3.39)

ωLi,j = l
(
ω†Li,j , ω̄i+2,j , ω̄i+1,j , ω̄i,j , ω̄i−1,j , ω̄i−2,j

)
. (3.40)

The function ω̂ = l(ω†, ω−2, ω−1, ω0, ω+1, ω+2) begins by calculating a “monotonicity-
preserving” limit for ω, ωMP :

ωMP = ω0 + minmod [(ω+1 − ω0) , α (ω0 − ω−1)] . (3.41)

Higher values of α allow higher order accuracy in the interpolations but also reduce
the allowable time step that will ensure monotonicity in an SSP Runge-Kutta algo-
rithm. As suggested in Ref. [27], we set α = 4. minmod [x, y] is the median of x, y,
and 0: minmod [x, y] = (sign(x) + sign(y))×min (|x| , |y|) /2. The multiple-argument
minmod [z1, ..., zk] function returns the smallest argument if all are positive, the largest
argument if all are negative and zero otherwise. Part of the efficiency of the SuHu
limiter is a check to see if any limiters must be applied to the edge value. If we are
within a certain tolerance (ε = 10−10), we do not have to apply any limiters to ω†:

if
(
ω† − ω0

) (
ω† − ωMP

)
< ε then ω̂ = ω†. (3.42)

Otherwise we proceed with the limiting procedure, beginning with some second dif-
ferences:

d−1 = ω−2 + ω0 − 2ω−1, (3.43)

d0 = ω−1 + ω+1 − 2ω0, (3.44)

d1 = ω0 + ω+2 − 2ω+1. (3.45)

We then modify these differences:

dM4
+ = minmod [4d0 − d1, 4d1 − d0, d0, d1] , (3.46)

dM4
− = minmod [4d−1 − d0, 4d0 − d−1, d0, d−1] . (3.47)

The limiting algorithm continues by calculating various geometric factors. The mean-
ing and reasoning behind these are given in Ref. [27], but for simplicity, let us leave
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these details and proceed with the algorithm.

ωUL = ω0 + α (ω0 − ω−1) , (3.48)

ωAVG =
1

2
(ω0 + ω+1) , (3.49)

ωMD = ωAVG − 1

2
dM4

+ , (3.50)

ωLC = ω0 +
1

2
(ω0 − ω−1) +

4

3
dM4
− . (3.51)

These values are used to calculate the minimum and maximum allowable values for
ω†:

ωmin = max
[
min

(
ω0, ω+1, ω

MD
)
,min

(
ω0, ω

UL, ωLC
)]
, (3.52)

ωmax = min
[
max

(
ω0, ω+1, ω

MD
)
,max

(
ω0, ω

UL, ωLC
)]
. (3.53)

Finally one modifies the edge value by taking the median of these two limits:

ω̂ = median
(
ω†, ωmin, ωmax

)
. (3.54)

Eqs. 3.41-3.54 make up the entire limiting function, l(ω†, ω−2, ω−1, ω0, ω+1, ω+2),

which can be applied to each edge interpolation,
{
ω†Ri,j , ω

†L
i,j

}
, using Eqs. 3.39 and 3.40.

Even though the SuHu method seems outwardly complex, the symmetries in both the
interpolation and limiting phases of the algorithm allow for easy coding. The SuHu
limiter maintains the order of the underlying algorithm even at extrema and guaran-
tees monotonicity preservation for one-dimensional linear passive advection problems,
but global constraints might not be enforced in the presence of nonlinearities. Posi-
tivity is also insured if a time-step restriction is satisfied.

3.2.5. Suresh-Huynh/Piecewise Parabolic Method Hybrid (SuHu-PPM).
To form a simple hybrid technique, we use the PPM interpolations as laid forth in
Sec. 3.2.2 but the limiters proposed by Ref. [27] and detailed in Sec. 3.2.4. This is not
out of the spirit of the SuHu method, as Ref. [27] states that the limiters therein can
be applied to any type of interpolation, and here we apply them to the fourth order
PPM interpolations. (This hybrid choice was motivated by results found in Sec. 4.)
Explicitly, we use Eqs. 3.23-3.24 for the initial interpolations, but apply the limiters
in Eqs. 3.39-3.40. (The value of α in Eq. 3.41 can be set to 3 when using the fourth
order initial interpolations of PPM, which would allow a slightly larger time step,
though we leave α = 4 for the results in this paper.)

3.3. On Parallelization. Considering the recent advancements in high-powered
computation, it is prudent to mention a few words on an algorithm’s ability to par-
allelize efficiently over multiple processors and overall performance. Because higher
order methods generally involve more FLOPS per memory access (and can reuse data
in cache from adjacent cells in the higher-order interpolations), one will generally ex-
pect higher order methods to perform better on modern computer architectures where
memory bandwidth is usually more of a bottleneck than the CPU.

Even though the test problem contained here was run on a single serial processor,
all of the methods tested lend themselves to domain decomposition. The number of
requisite ghost cells each processor needs depends upon the algorithm. The Arakawa
method needs one layer to achieve its second-order accuracy, as cell (i, j) needs infor-
mation from its immediate neighbors (i± 1, j ± 1). A higher-order Arakawa method,

15



such as the one discussed in Sec. 4.3, would require more information. For instance a
fourth-order method needs (i± 2, j ± 2) [22] and, thus, two layers of ghost cells. The
WENO3 method similarly only needs one layer of extra information per processor to
calculate edge values

{
ωRi,j , ω

L
i,j , ω

U
i,j , ω

D
i,j

}
. However, in order to properly calculate the

fluxes through the faces of cell (i, j), we must know the edge vorticity values on both
sides of the interfaces, or specifically

{
ωRi−1,j , ω

L
i+1,j , ω

U
i,j−1, ω

D
i,j+1

}
. This implies that

each processor must first calculate all of the
{
ωRi,j , ω

L
i,j , ω

U
i,j , ω

D
i,j

}
on its sub-grid using

one ghost layer, then exchange information with its neighbors to be able to calculate
the correct fluxes and advance the solution and then exchange the newly calculated
vorticity values ωn+1

i,j with its neighboring processors. Alternatively, one could subdi-
vide the grid into domains with two ghost layers. This would allow each processor to
accurately calculate all of the

{
ωRi,j , ω

L
i,j , ω

U
i,j , ω

D
i,j

}
and

{
ωRi−1,j , ω

L
i+1,j , ω

U
i,j−1, ω

D
i,j+1

}
on its sub-domain, thereby consolidating two message passing events into one. In most
cases this will probably be better as it will reduce the total latency, but the choice of
which method to use would depend on details of the specific computer architecture
(such as the latency and bandwidth of the interprocessor communication relative to
CPU speed), and thus the relative efficiencies of having a slightly larger domain on
each processor and the speed at which processors can exchange information. Simi-
larly, the PPM, XPPM and SuHu methods could all run with two ghost cells, but it
will probably be more efficient to have three.

4. Results.

4.1. One-Dimensional Advection. By skipping the Poisson equation inver-
sion, Eq. 2.3, with the initial conditions vx = 0, vy = 1 and without viscosity, ν = 0,
the equations of motion become simple advection. Eq. 2.1 reduces to a wave equa-
tion. Solutions are easily tractable, as the initial disturbance propagates with constant
unit velocity. After a transit period (t = 10m, m ∈ N), any distortions from the initial
conditions are properties of the numerical algorithm only.

A standard test problem in one-dimensional advection is the transit of a Gaussian
and a step-function pulse (see, for instance Ref. [16]). After initialization, we let
these pulses transit through one period of motion and then compare one-dimensional
slices of the solution to the initial conditions. Fig. 4.1 shows the overlaid initial
(solid) and final (dotted) solutions for the six methods (all with CFL = v∆t/∆x =
0.1 so that time discretization errors are negligible). The Arakawa result displays
a large phase error, as evidenced by the mismatch in peak locations. Furthermore,
one clearly sees spurious oscillations that build up behind the pulses and propagate
through the mesh. These kinds of errors could be particularly significant in cases
where nonlinear interactions of coherent structures are important, so one would like
to minimize phase errors between various components of the solution. This may
require very high resolution with an Arakawa method and/or including relatively
strong viscosity. Much of the total error in the Arakawa solution originates from the
step function, which propagates through the mesh and adversely affects the smooth
pulse. However, even without the step function, the solution would still oscillate
unphysically negative (for a Gaussian with a Full Width at Half Maximum (FWHM)
of 1, and 12.8 points per FWHM, the oscillations in the solution will reach −6%
of the peak value after propagating a distance of 10). In many respects this is not
unexpected, as in the one-dimensional limit the Arakawa discretization reduces to
a second-order center-differenced method (see Eq. 3.2). The WENO3 and PPM4
solutions display significant diffusion near the Gaussian peak (PPM4 is slightly less
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diffusive), but both show relatively small phase errors and asymmetries. However, the
finite volume methods with smooth extrema preserving limiters reproduce the initial
conditions quite well, with peak amplitude drops of ∼ 10−7. Additionally, no finite
volume result has spurious oscillations; the solution stays above the initial minimum,
preserving positivity.

As another test, we can initialize the vorticity to be a cosine wave in the direction
of propagation with wave number k, ω0(y) = cos (ky). After the wave has moved
a time T = 2π/(kv), the numerical solution should again be a cosine wave, with a
possible phase shift and modified amplitude: ω(y, T = 2π/(kv)) = a cos (ky + φ).
Assuming no damping, the numerical cosine wave should satisfy

〈
ω2
〉

= 1/2. Let us
characterize a numerical damping factor γn by〈

ω2
〉

(T ) =
1

2
e−2γnT . (4.1)

An ideal algorithm would have small values for both γn and φ for all wave numbers
k∆y/π ∈ (0, 1). If one is primarily interested in large-scale physical features, low
damping and phase errors at small k would be particularly desirable, even though
in general, the phase and amplitude errors are not simple functions of only the wave
number for most of these algorithms because of the nonlinearities in the limiters they
use.

The phase error can be determined by the law of cosines, through the dot product
of ~ω0 = ω(y, t = 0) and ~ωT = ω(y, t = T ):

cos(φ) =
~ω0 · ~ωT
ω0ωT

. (4.2)

The phase can also be found less robustly by a non-linear least-squares fit of ω(y, T ).
We define the phase error Eφ as (1− cos(φ))/2, which maps φ ∈ [0, π]→ Eφ ∈ [0, 1].
As shown in Fig. 4.2, the phase errors of the higher-order algorithms (XPPM, SuHu,
SuHu-PPM) are all much lower than those of the WENO3, PPM4 and Arakawa
methods across all wavelengths.

We display
〈
ω2
〉

with calculated numerical damping rates, γn, of each method
in Fig. 4.3. As the Arakawa spatial discretization method does not introduce any
dissipation itself, the curve labelled Arakawa represents the small residual numerical
dissipation from the third-order time-stepping method. While the WENO3 and PPM4
methods have relatively high rates of numerical dissipation, the extremum-preserving
methods have significantly lower dissipation. XPPM drops to the minimum possible
dissipation at long-wavelengths, because it reverts to an undamped centered method
in well-resolved regions. The observation that SuHu is better than XPPM at higher
wavenumber while XPPM is better at lower wavenumber motivated the choice of the
SuHU-PPM hybrid, which uses the centered fourth order interpolation of the initial
step of PPM in combination with the SuHu limiters. The SuHu-PPM method nearly
overlaps the true solution as it approaches the minimum level of dissipation for long-
wavelengths of k∆y . π/3.

To understand some of the asymptotic scalings for the numerical dissipation rate
in Fig. 4.3, consider the following. If Eqs. 3.17-3.18 from the WENO3 method were
used to interpolate the boundary values with no further limiters, then this would
correspond to an upwind-biased third order method, which would have a numerical
damping that asymptotically scales as γn ∼ |v|(∆x)3k4. As seen in damping rates
of Fig. 4.3, the additional limiters in the WENO3 method give larger damping,
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Fig. 4.1. Advection of a Gaussian and step-function pulse for one transit (dots) through a
1-D periodic domain, overlaid with the initial conditions (solid line), ν = 0, vy = 1. The Arakawa
(top left) solution shows a large phase shift (the peak centers do not match) and significant spurious
oscillations. The WENO3 method (top right) is significantly damped near the peak, due to first-order
accuracy near extrema. While PPM4 (mid left) is less diffusive, neither peak exactly matches up with
its initial condition and both display a slight asymmetry. As to be expected, XPPM (bottom left) only
differs from PPM4 in its treatment of the smooth extremum. It and the other extrema-preserving
methods, SuHu (mid right) and SuHu-PPM (bottom right), do a very good job at reproducing the
correct Gaussian solution, with no negative solutions around the discontinuous pulse.
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Fig. 4.3.
〈
ω2

〉
as a function of wave number for the passive advection of a cosine wave for

the different algorithms (left), along with associated numerical damping factors (right) as defined by〈
ω2

〉
(T ) = 1

2
e−2γnT . As expected, the Arakawa method preserves

〈
ω2

〉
= 1/2 over all wavelengths

and displays the minimum level of dissipation in the system, which is due entirely to the RK3
time advancement algorithm. The WENO3 method is the most diffusive, and the PPM4 solution
is somewhat less damped. The extremum-preserving methods are closest to the true solution at low
wave numbers and the SuHu-PPM hybrid technique approaches the minimum level of dissipation for
k∆y . π/3.

γn ∝ k3, which can be understood as due to the fact that WENO3 reverts to a
piecewise constant interpolation near extrema, i.e., simple first order upwind that
locally introduces a numerical damping ∼ |v|∆xk2. Since the fraction of cells at
extrema is proportional to k∆x, the resulting average numerical damping rate ∼ k3.
Similar arguments apply to the regular PPM method, which is also dominated by
clipping errors at extrema.

4.2. Two-Dimensional Vortex Merger. We now turn to the fully two dimen-
sional nonlinear problem as described in Sec. 2. The two Gaussian monopoles begin
to swirl around each other and merge together. During the process, sideband rings
propagate outward across the mesh. Details on the vortex merging process can be
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Fig. 4.4. Low (N = 128) and high-resolution (N = 1024) vorticity solutions for the vortex
merger problem with high Reynolds number Re = 105 at t = 100, for the WENO3, Arakawa, SuHu
and XPPM algorithms. The low-resolution solution is most accurate for SuHu and XPPM, as the
merging peaks are still resolved. The low-resolution WENO3 solution is so diffusive that the two
individual vortices are no longer visible, and the low-resolution Arakawa solution is overrun with
numerical oscillations. At high resolution, fine banded features are missing from WENO3 while an
altered color-scale shows that spurious oscillations still affect the Arakawa solution.

20



found in Ref. [24], but it should be noted that the vorticity should never drop below
the floor as defined by the background. Any such solutions are solely artifacts of the
numerical method.

We show in Fig. 4.4 Re = 105 vorticity solutions at t = 100 for WENO3 (top),
Arakawa (upper-middle), SuHu (lower-middle) and XPPM (bottom) at two different
resolutions, N = 128 (left) and N = 1024 (right). Beginning with the low-resolution
case, we see that the WENO3 solution is extremely affected by numerical dissipation.
The solution has washed out all fine features and has joined the two peaks into a single
ellipsoid shape. Furthermore, the orientation of that ellipse does not agree with any
of the other solutions. The low-resolution Arakawa solution is similarly plagued with
numerical errors. A changed color scale shows that spurious oscillations ∼ 50% of the
converged solution obscure the result. However, both the SuHu and XPPM methods
more faithfully reproduce the solution, even at low resolutions. Both of the merging
peaks are resolved alongside the expanding banded arms. The N = 1024 extremum-
preserving and Arakawa solutions show crisp details, such as the wake features seen
trailing the vortexes, which are washed out by the WENO3 method. This is in
agreement with the observations made by Naulin and Nielsen [21]. However, the
high-resolution Arakawa solution still has excessive oscillations. This is seen not only
in the scale differences of Fig. 4.4 (the maximum and minimum values of the Arakawa
solution are larger than those of the other methods), but also in a one-dimensional
slice through the domain center, as shown in Fig. 4.5.

With respect to overall levels of dissipation, we present in Fig. 4.6 the total
enstrophy Ω at t = 100 (left plot) and at t = 500 (right plot), for different resolutions,
N = 1024, 512, 256, 128. Plotted alongside is a curve marked “optimal sub-grid,”
which corresponds to a hypothetical sub-grid model that leaves the spectrum un-
perturbed except for truncation at kmax = π/(∆x) = kminN/2. The total enstrophy
is calculated by summing the enstrophy spectrum Ωk over all k up to kmax from a
well-resolved N = 1024 simulation using the fourth order Arakawa method described
in Section 4.3. The optimal sub-grid curves are fairly flat, indicating that little of the
enstrophy is above these cutoffs.

The solutions for both the WENO3 and Arakawa methods at t = 100 agree with
those found in Ref. [21]. The numerical dissipation in WENO3 makes the enstrophy
significantly lower than that calculated via the Arakawa method, which mathemati-
cally preserves the enstrophy. As such, the Arakawa solution only contains dissipation
from the explicit viscous term and from the time-stepping algorithm, which is small.
The extremum-preserving algorithms are the least dissipative of the finite volume
schemes; however, even the PPM4 method presents a significant improvement over
WENO3. (A correction to the finite volume methods that accounts for the fact that

finite volume methods actually deal with cell-averaged vortices ωi,j and that [ωi,j ]
2

is

slightly larger than ω2
i,j is very small and has no visual impact on this plot.) While

Arakawa is closest to the correct total enstrophy when dissipation is not yet important
(at early times) and converges most quickly at high resolution, it can have problems
at low resolution at later times (as seen in the t = 500 plot) when dissipation should
occur but the dissipation scale is not adequately resolved. Even at early times when
Arakawa is closer to the correct total enstrophy because it has more enstrophy than
the finite volume methods, the phases between the high k modes containing that extra
entrophy are not accurate. This leads to the large spurious oscillations seen in the
low resolution results in Fig. 4.5.

In general, some level of dissipation is desirable for simulations of turbulent or
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Fig. 4.5. One-dimensional slices of vorticity, ω (x = 5.0, y, t = 100) for the Arakawa (top left),
WENO3 (top right) and SuHu-PPM (bottom) techniques. Both Arakawa resolutions show unphys-
ical oscillations. The SuHu-PPM algorithm, like the other extremum-preserving techniques, more
accurately locates some of the vorticity peaks at low resolution that are damped out by dissipation
in WENO3, while still avoiding the negative overshoots of the Arakawa method.

other nonlinear cascades, as illustrated in another way by the enstrophy spectra Ωk
shown in Fig. 4.7. This plots kΩ (k) as a function of normalized wave-number k/kmin,
with kmin = 2π/L, for different resolution simulations at late time, t = 500, for the
same Re = 105 vortex merger problem as before. The left plot is for the Arakawa
technique and the right plot is for the SuHu-PPM hybrid technique (XPPM and SuHu
give similar results). The one-dimensional enstrophy spectrum Ωk plotted here is the

sum over all modes with |~k| lying in the bin k ±−∆k/2, so that the total enstrophy
is Ω =

∑
k Ωk, where k = kmin, 2kmin, . . . ,

√
2(N/2)kmin.

As can be seen in Fig. 4.7, both methods converge to the proper answer at
high resolution, and all methods work well for the energy-containing larger scales
(k/kmin < 10 in this case), but the Arakawa method at lower resolution has an
artificial pileup of enstrophy at high k. Because of the conservation properties of
Arakawa, the enstrophy is trapped in the system if there is no dissipation (or the
dissipation scale is not sufficiently resolved), and instead of cascading down to unre-
solved smaller scales, the enstrophy is reflected back from the grid-scale, leading to
a pileup. This pileup or bottleneck problem is of course well-known in turbulence
simulations and is the motivation to add some kind of artificial dissipation or hyper-
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1/N , for grid sizes N = 128, 256, 512, 1024, for the high Reynolds number case. The t = 100 plot
shows that WENO3 is the most dissipative, while the extremum-preserving methods are comparable
to each other and significantly better than WENO3. Arakawa is closest to the optimal result at
t = 100, but at later times when more dissipation should have occured, the Arakawa method does
not do as well for coarser resolutions where the dissipation scale is not adequately resolved. At the
coarsest resolution the SuHu-PPM solution is closer than either Arakawa solution to that of the
optimal sub-grid model.
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Fig. 4.7. Enstrophy spectra for high Reynolds number at different resolutions, for the Arakawa
method (left) and the SuHu-PPM method (right). At lower resolutions the Arakawa method suffers
from an artificial pileup of enstrophy at high k because it is not able to cascade to unresolved smaller
scales where dissipation should occur. To avoid a pileup of small-scale enstrophy, sufficient damping
needs to be included in the equations. The higher-order upwind methods, such as SuHu-PPM (right),
are more robust on coarse grids, because they automatically provide some dissipation near the grid
scale, which is needed to get the correct inertial range cascade behavior.

viscosity to such systems [3, 25]. The time it takes for nonlinearities to cascade part
of the solution to dissipation scales is often very fast (for example, in fully-developed
three-dimensional Kolmogorov turbulence, energy reaches the dissipation scale in a
time of order the large-scale eddy turnover time, independent of Reynolds number),
so dissipation quickly becomes significant in such cases.

In the lowest resolution N = 128 Arakawa case, the pileup spectrum for k/kmin >
20 is roughly similar to what one might expect for thermalization of enstrophy, where
there is no net cascade of enstrophy. (For 2-D thermal equilibrium, the energy spec-
trum is Ek ∝ k/(α+βk2), so the asymptotic result at high k would give kΩk ∝ k2 for
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positive β coefficient.) This is similar to recent observations of partial thermalization
at high k for hyperviscosities ∝ ∇2p with excessively high p exponents [9]. Note that
the standard expectations for 2-D turbulence [13, 23] with a net cascade would give
Ek ∼ k−3 in the enstrophy intertial range, and thus kΩk ∼ k0, though these results
for fully developed turbulence are not necessarily expected to hold for the coherent
vortex merger problem under study here.

The SuHu-PPM method (and other similar methods) is more robust at lower res-
olution, giving the qualitatively correct enstrophy inertial range, because it essentially
introduces a kind of sub-grid model that provides some needed dissipation near the
grid scale. While the numerical dissipation in these methods is the minimum necessary
to ensure monotonicity (in one-dimensional linear advection), and acts qualitatively
as a sub-grid model that improves robustness on coarse grids, it is not necessarily
the optimal amount of damping for a sub-grid model purely from a turbulence mod-
eling perspective (if small amounts of non-monotonic overshoots can be tolerated).
For fluctuations near the grid scale, these methods revert to first order upwind dif-
ferencing, which corresponds to a damping rate of order |v|/∆x, while eddy-viscosity
concepts [15] indicate that a sub-grid model of the transfer from barely resolved scales
to unresolved scales should introduce a damping rate near the grid scale of order the
shearing rate, |∇v|. For a Kolmogorov spectrum E(k) ∼ k−5/3, where most of the
energy is at large scales but most of the shearing is done by small scales, this means
that upwind damping at the grid scale is too strong by a factor of approximately√
k2

max

∫
dk E(k)/

√∫
dk k2E(k) ∼ (kmax/k0)1/3, where k0 is the wave number of the

energy-containing eddies and kmax ∼ 1/(∆x). While this damping is too strong at
the grid scale at high resolution, where kmax/k0 is large, the numerical dissipation
drops off relatively rapidly for k/kmax < 1/2 to 1/3 (see Fig. 4.3 and Fig. 4.7), like
a hyperviscosity, so longer wavelength fluctuations are relatively unaffected.

For other types of flow, the numerical dissipation in these methods is not enough
because it only damps modes with short scales in the direction of the flow, irrespec-
tive of the scales perpendicular to the flow direction. For example, consider passive
advection ∂ω/∂t + ∇ · (~vω) = 0 in a sheared flow ~v = x̂sy, with the initial condi-
tion ω(t = 0) = cos(k0x). The exact solution should be ω = cos(k0x − k0sty). If
k0 � kmax then the numerical dissipation will be negligible, even though the actual
solution should cascade to unresolved scales when the y-component of the wave num-
ber k0st = kmax. This absence of damping will cause a recurrence error on time scales
larger than kmax/(k0s). For many turbulent systems, the gradients of the advected
quantity will be randomly oriented with respect to the flow direction, so there will
be sufficient damping near the grid scale. To further improve robustness one could
consider adding a sub-grid model to introduce damping related to sheared flows.

It is also possible that a sub-grid model [15] (even a relatively simple Smagorinsky
model) added to the Arakawa method could significantly improve its robustness with
respect to the enstrophy spectral shape and the pileup problem, though such a sub-
grid model by itself would not be enough to eliminate the phase errors that exist even
in uniform advection or preserve exact positivity or monotonicity. One could further
add limiters only to try to preserve positivity, which would introduce less dissipation
than limiters that also try to preserve monotonicity. (These sub-grid models and
limiters would of course break the conservation properties that the Arakawa method
has by itself.) We leave exploration of these possibilities to future work.
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4.3. A Higher-Order Finite Difference Solution. It is possible to construct
a higher order Arakawa discretization, in the hopes of alleviating some of the issues
seen with the lower-order method presented in Eq. 3.1. The lower order Arakawa
discretization is a symmetric approximation to the Poisson bracket on a grid of size
h:

[ω, ψ]h = [ω, ψ]True + C2h
2 + C4h

4 + . . . . (4.3)

In this case [ω, ψ]True is the true value of the Poisson bracket, and the second term
represents the error in the discretization, which is proportional to h2 and scales with
a constant factor C2. By applying the same algorithm but on a larger grid spacing,
we can equally write:

[ω, ψ]2h = [ω, ψ]True + 4C2h
2 + 16C4h

4 + . . . . (4.4)

Equation 4.4 can be obtained from Eq. 3.1 by the transformation h⇒ 2h and {i, j}±
1 ⇒ {i, j} ± 2. These can be combined algebraically to eliminate the second-order
error term, thus giving us a new Poisson bracket discretization that has an error
proportional to the fourth power of the grid spacing, much like many of the higher
order finite volume methods. Explicitly this becomes:

4

3
[ω, ψ]h −

1

3
[ω, ψ]2h = [ω, ψ]True − 4C4h

4 + . . . . (4.5)

The discretization given by Eq. 4.5 is a fourth order Arakawa finite difference approx-
imation to the Poisson bracket with the same conservation properties as the lower
order method detailed above. The grid stencil is now five points in any direction,
the same as the higher order finite volume methods, with similar implications for
parallelization.

Despite being a more accurate discretization of the Poisson bracket, this higher
order method still traps enstrophy in the system and allows non-physical oscillations.
Fig. 4.8, a recreation of the tests in Figs. 4.5 and 4.7 with the fourth order Arakawa
method, shows similar results to the lower order Arakawa method. Since enstrophy is
exactly conserved by the Arakawa methods, it cannot leave the system at the grid scale
without explicit damping, and the power spectrum is altered if the dissipation scale
is not adequately resolved. The higher order Arakawa solution still displays spurious
oscillations, visibly violating positivity, even in the highest resolution simulation.

Higher order versions of the Arakawa Poisson bracket representation share the
conservation properties of their lower order counterparts. Since positivity violation,
spurious oscillation and turbulent spectrum alteration are all related to these conser-
vation properties, it is not possible to eliminate these problems by merely employing
a higher order solution.

5. Conclusions. We have compared a number of discretizations for the Poisson
bracket nonlinearity for one-dimensional passive advection and for the vortex merger
problem in two-dimensional incompressible Navier-Stokes. The ubiquitous nature of
this nonlinearity allows for the application of these techniques to other equations,
notably those used to describe edge gyrokinetic and gyrofluid plasmas.

In agreement with previous work [21], we find that the numerical dissipation in
the third order WENO method [14, 18, 26] can be significant for some applications.
The Arakawa method [1] is designed to be dissipation-free, and so of course does
better in terms of conservation properties in cases where there should not be much
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Fig. 4.8. Utilizing a higher order Arakawa method prevents neither spectrum pileup in low
resolution cases (left) nor spurious oscillations (right).

dissipation. However, depending on the application at hand, there are other properties
of interest beside dissipation rates, such as spectral shape, phase errors, spurious
oscillations, and positivity. We have also extended the analysis to include a number
of recent finite volume techniques that are both accurate to a higher order and seek
to increase the accuracy of solutions at smooth extrema, leading to lower levels of
numerical dissipation. These include the high-order WENO implementation of Suresh
and Huynh [27], Colella and Sekora’s smooth extrema limiter [6] for the Piecewise
Parabolic Method [7], and a hybrid technique that uses PPM4 interpolations and
the Suresh and Huynh limiter. The extrema preserving techniques do extremely well
in the passive advection problem, eliminating extraneous oscillations and reducing
phase errors while keeping dissipation minimal. In the fully nonlinear problem they
are less dissipative than the conventional finite volume methods, reduce unphysical
oscillations, resolve details fairly well at low resolution and model cascade behavior.
All methods of course converge to the right answer when the dissipation scale is
well resolved, while these recent finite volume methods are fairly robust even at lower
resolutions, because their numerical dissipation acts as an approximate sub-grid model
(though not necessarily an optimal one).

Positivity is an important property to preserve for physical quantities such as
density, temperature and distribution function in simulations of edge plasmas. While
the finite-volume methods studied here do fairly well at preventing artificial overshoots
and preserving positivity, because of the modifications to the limiters to preserve
the accuracy of smooth extrema they may still produce small negative overshoots.
However, it is possible to strictly preserve positivity with a small supplement to the
limiters used in these algorithms, similar to the time step constraint they already use
to enforce monotonicity. There are various ways the time step constraint might be
further relaxed while maintaining positivity. One possibility, mentioned in Ref. [6], is
to couple these algorithms with a Flux Corrected Transport algorithm [28].

Another class of techniques that may be worth exploring for these types of prob-
lems are Discontinuous Galerkin algorithms [4, 17, 29], as they combine some of the
favorable features of finite volume and finite elements, and have relatively low phase
errors while keeping a local stencil for efficient implementation.
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